AcousticID
AcousticID
Create a AcousticID object
Description:
AcousticID is an optimization routine built on top of SciPy (https://scipy.org/) and AcousticTMM that can be used to identify the difficult-to-measure parameters of the Johnson-Chompoux-Allard equivalent fluid model using an inverse characterization procedure based on the following paper:
Atalla, Youssef & Panneton, R.. (2005). Inverse acoustical characterization of open cell porous media using impedance tube measurements. Canadian Acoustics - Acoustique Canadienne. 33.
Or by using an indirect characterization procedure based on the following paper:
Panneton, R. & Salissou, Yacoubou. (2009). Indirect acoustical characterization of sound absorbing materials.. The Journal of the Acoustical Society of America. 126. 2297. 10.1121/1.3249416.
Or by a hybrid characterization procedure that combines the inverse and indirect methods.
Attributes
mount_type (str):
'No Gap', 'Gap', or 'Dual'
Specify whether impedance tube measurements are of a sample with rigid backing, an air gap, or both.
no_gap_file (str): Name of the csv filepath that contains the frequency dependent absorption, reflection, or surface impedance coefficients of a single porous layer obtained from an impedence tube measurement with rigid backing. The csv file should contain 2 columns of equal length -- the frequencies in the 1st column and coefficients in the 2nd.
gap_file (str): Name of the csv filepath that contains the frequency dependent absorption, reflection, or surface impedance coefficients of a single porous layer obtained from an impedence tube measurement with an air gap backing. The csv file should contain 2 columns of equal length -- the frequencies in the 1st column and coefficients in the 2nd.
input_type (str): 'absorption', 'reflection', or 'surface' -- specifies the type of measurement made with the impedance tube.
air_temperature (float): Temperature of air [°C]. If specified, all other air properties will be determined by this parameter.
sound_speed (float): Speed of sound in air [m/s]
air_density (float): Density of air [kg/m3]
Cp (float): Specific heat @ constant pressure [kJ/kg K]
Cv (float): Specifc heat @ constant volume [kJ/kg K]
viscosity (float): Dynamic viscosity of air [kg/m*s]
Pr (float): Prandtl number of air []
P0 (float): Atmospheric pressure [Pa]
Source code in src/acoustipy/Params.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 |
|
_predictionJCA(parameters)
Calculates the predicted frequency dependent absorption curve using the parameters identified in the optimization procedure defined in the find_values methods
Parameters
parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.
Returns
predicted (ndarray): 2D array of frequencies and predicted absorption coefficients
Source code in src/acoustipy/Params.py
_error(x)
Function that is minimized in the optimization routine. Calculates the error between the measured (impedance tube) and predicted (TMM) absorption coefficients.
Parameters
x (list): list structure containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap thickness of the sample (in that order).
Returns
err (float): if opt_type is 'No Gap' or 'Gap' --> sum of the absolute square difference between measured and predicted absorption coefficients across all specified frequencies. if opt_type is 'Dual', the error for each mounting condition is averaged into a single error metric
Source code in src/acoustipy/Params.py
_bounds(tort)
Defines the lower and upper boundary values for the parameters in the optimization routine. Bounds for thickness, flow resistivity, porosity, and air gap are calculated using the supplied "known" values and the uncertainty. Tortuosity, viscous, and thermal characteristic length bounds are defined in:
Atalla, Youssef & Panneton, R.. (2005). Inverse acoustical characterization of open cell porous media using impedance tube measurements. Canadian Acoustics - Acoustique Canadienne. 33.
Parameters
tort (float): tortuosity --> defined either as the initial guess or the most recent value returned by the optimization routine.
Returns
bounds (tuple): contains tuples of the lower and upper bounds for each parameter.
Source code in src/acoustipy/Params.py
Inverse(thickness, flow_resistivity, porosity, air_gap=0, uncertainty=0.01, early_stopping=1e-15, verbose=False)
Optimization routine for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths). The routine uses the Sequential Least Squares Programming method (https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html) to minimize the error between predicted and actual absorption coefficients.
If the early stopping criterion is not met after an initial guess, a unique grid search of the parameter space is crafted to help ensure the global minimum is found (ie the correct values for the parameters are identified).
Parameters
thickness (float): The measured thickness of the sample [mm]
flow_resistivity (float): The measured flow resistivity of the sample [Pa*s/m2]
porosity (float): The measured porosity of the sample [-]
air_gap (float): The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]
uncertainty (float): A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements of the sample [0 - 1]. Increasing the uncertainty value will result in a wider search of the parameter space.
early_stopping (float): criterion for ending the search early. If the calculated error at any given step is less than this value, the routine will terminate and return the results. The default value of 1e-15 has been tested on a number of simulated cases.
verbose (bool): If true, the progress of the optimization routine will print to the console.
Returns
result_dict (dict): dictionary containing the identified parameters associated with the lowest calculated error.
Source code in src/acoustipy/Params.py
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
|
Indirect(thickness, porosity, flow_resistivity=None, air_gap=0)
Indirect method for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths), based on:
Panneton, R. & Salissou, Yacoubou. (2009). Indirect acoustical characterization of sound absorbing materials.. The Journal of the Acoustical Society of America. 126. 2297. 10.1121/1.3249416.
This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples and it is susceptible to uncertainty in the measurements of thickness, porosity, flow resistivity, air gap, and the acoustic indicator(s) -- but the advantage is that it does not require a flow resistivity measurement in order to estimate the JCA parameters.
Parameters
thickness (float): The measured thickness of the sample [mm]
porosity (float): The measured porosity of the sample [-]
flow_resistivity (float): Optional, the measured flow resistivity of the sample [Pa*s/m2]. If no flow resistivity is specified, the value will be estimated automatically.
air_gap (float): The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]
Returns
result_dict (dict): dictionary containing the identified parameters associated with the lowest calculated error.
Source code in src/acoustipy/Params.py
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
|
Hybrid(thickness, porosity, flow_resistivity=None, air_gap=0, uncertainty=0.01, early_stopping=1e-15, verbose=False)
The Hybrid routine uses both the inverse and indirect characterization methods to identify the JCA parameters. The parameters are first estimated using the indirect method and the error between measured and estimated absorption coefficients is determined.
If the early stopping criterion is not met using the indirect method, the estimate is then used as the initial guess for the inverse procedure and to calculate the bounds of the grid search.
This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples. The advantage of using this procedure compared to the inverse or indirect methods alone are: Inverse: The Hybrid method does not require flow resitivity to be known. Indirect: The Hybrid method is much less susceptible to uncertainty in the measurements.
Parameters
thickness (float): The measured thickness of the sample [mm]
flow_resistivity (float): The measured flow resistivity of the sample [Pa*s/m2]
porosity (float): The measured porosity of the sample [-]
air_gap (float): The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]
uncertainty (float): A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements of the sample [0 - 1]. Increasing the uncertainty value will result in a wider search of the parameter space.
early_stopping (float): criterion for ending the search early. If the calculated error at any given step is less than this value, the routine will terminate and return the results. The default value of 1e-15 has been tested on a number of simulated cases.
verbose (bool): If true, the progress of the optimization routine will print to the console.
Returns
result_dict (dict): dictionary containing the identified parameters associated with the lowest calculated error.
Source code in src/acoustipy/Params.py
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
|
stats(parameters)
Calculates statistics about the parameters identified in the optimization routine via linear regression of the predicted vs measured absorption coefficients.
Parameters
parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.
Returns
stats (dict): dictionary containing the slope, intercept, r value, p value, and std error returned from the linear regression. If 'Dual' opt_type is specified, the statistics for each mounting condition are averaged.
Source code in src/acoustipy/Params.py
plot_comparison(parameters)
Plots the predicted and measured frequency dependent absorption coefficients.
Parameters
parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.
Source code in src/acoustipy/Params.py
to_csv(FileName, parameters)
Saves the identified parameters and the measured/predicted absorption curves to a csv file.
Parameters
FileName (str): Name of the csv file to save data to.
parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.
Source code in src/acoustipy/Params.py
load_to_array(FileName, type='complex')
Loads data from csv or excel file.
Parameters
FileName (str): Name of the file to load data from
type (str): type of data being loaded -- either complex or floating point data
Source code in src/acoustipy/Params.py
to_database(parameters, layer_name)
Saves the identified parameters as a new layer in a database.
Parameters
parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.
layer_name (str): Specifies the name of the layer. Must be a unique identifier.