Skip to content

AcousticID

AcousticID

Create a AcousticID object

Description:

AcousticID is an optimization routine built on top of SciPy (https://scipy.org/) and AcousticTMM that can be used to identify the difficult-to-measure parameters of the Johnson-Chompoux-Allard equivalent fluid model using an inverse characterization procedure based on the following paper:

Atalla, Youssef & Panneton, R.. (2005). Inverse acoustical characterization of open cell porous media using impedance tube measurements. Canadian Acoustics - Acoustique Canadienne. 33.

Or by using an indirect characterization procedure based on the following paper:

Panneton, R. & Salissou, Yacoubou. (2009). Indirect acoustical characterization of sound absorbing materials.. The Journal of the Acoustical Society of America. 126. 2297. 10.1121/1.3249416.

Or by a hybrid characterization procedure that combines the inverse and indirect methods.

Attributes

mount_type (str): 'No Gap', 'Gap', or 'Dual'
Specify whether impedance tube measurements are of a sample with rigid backing, an air gap, or both.

no_gap_file (str): Name of the csv filepath that contains the frequency dependent absorption, reflection, or surface impedance coefficients of a single porous layer obtained from an impedence tube measurement with rigid backing. The csv file should contain 2 columns of equal length -- the frequencies in the 1st column and coefficients in the 2nd.

gap_file (str): Name of the csv filepath that contains the frequency dependent absorption, reflection, or surface impedance coefficients of a single porous layer obtained from an impedence tube measurement with an air gap backing. The csv file should contain 2 columns of equal length -- the frequencies in the 1st column and coefficients in the 2nd.

input_type (str): 'absorption', 'reflection', or 'surface' -- specifies the type of measurement made with the impedance tube.

air_temperature (float): Temperature of air [°C]. If specified, all other air properties will be determined by this parameter.

sound_speed (float): Speed of sound in air [m/s]

air_density (float): Density of air [kg/m3]

Cp (float): Specific heat @ constant pressure [kJ/kg K]

Cv (float): Specifc heat @ constant volume [kJ/kg K]

viscosity (float): Dynamic viscosity of air [kg/m*s]

Pr (float): Prandtl number of air []

P0 (float): Atmospheric pressure [Pa]

Source code in src/acoustipy/Params.py
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
class AcousticID():
    """
    Create a AcousticID object

    Description:
    ------------
    AcousticID is an optimization routine built on top of SciPy (https://scipy.org/) and AcousticTMM that can be used 
    to identify the difficult-to-measure parameters of the Johnson-Chompoux-Allard equivalent fluid model using an 
    inverse characterization procedure based on the following paper: 

    Atalla, Youssef & Panneton, R.. (2005). Inverse acoustical characterization of open cell porous 
    media using impedance tube measurements. Canadian Acoustics - Acoustique Canadienne. 33.

    Or by using an indirect characterization procedure based on the following paper:

    Panneton, R. & Salissou, Yacoubou. (2009). Indirect acoustical characterization of sound absorbing materials.. 
    The Journal of the Acoustical Society of America. 126. 2297. 10.1121/1.3249416.

    Or by a hybrid characterization procedure that combines the inverse and indirect methods.

    Attributes
    ----------
    mount_type (str):
        'No Gap', 'Gap', or 'Dual'    
        Specify whether impedance tube measurements are of a sample with rigid backing, an air gap, or both.

    no_gap_file (str):
        Name of the csv filepath that contains the frequency dependent absorption, reflection, or surface impedance
        coefficients of a single porous layer obtained from an impedence tube measurement with rigid backing.
        The csv file should contain 2 columns of equal length -- the frequencies in the 1st column and coefficients in the 2nd.

    gap_file (str):
        Name of the csv filepath that contains the frequency dependent absorption, reflection, or surface impedance
        coefficients of a single porous layer obtained from an impedence tube measurement with an air gap backing.
        The csv file should contain 2 columns of equal length -- the frequencies in the 1st column and coefficients in the 2nd.

    input_type (str):
        'absorption', 'reflection', or 'surface' -- specifies the type of measurement made with the impedance tube.

    air_temperature (float):
        Temperature of air [°C].  If specified, all other air properties will be determined by this parameter.

    sound_speed (float):
        Speed of sound in air [m/s]

    air_density (float):
        Density of air [kg/m3]

    Cp (float):
        Specific heat @ constant pressure [kJ/kg K]

    Cv (float):
        Specifc heat @ constant volume [kJ/kg K]

    viscosity (float):
        Dynamic viscosity of air [kg/m*s]

    Pr (float):
        Prandtl number of air []

    P0 (float):
        Atmospheric pressure [Pa]

    """
    def __init__(self,
                 mount_type:str = "No Gap",
                 no_gap_file:str = None,
                 gap_file:str = None,
                 input_type:str = 'absorption',
                 air_temperature:float = None,
                 sound_speed:float = 343.152,
                 air_density:float = 1.2058,
                 Cp:float = 1.004425,
                 Cv:float = 0.717425,
                 viscosity:float = 1.825e-05,
                 Pr:float = .7157,
                 P0:float = 101325
                 ):

        self.temp = air_temperature
        self.speed = sound_speed
        self.density = air_density
        self.Cp = Cp
        self.Cv = Cv
        self.viscosity = viscosity
        self.Pr = Pr
        self.P0 = P0
        self.opt_type = mount_type
        self.input_type = input_type
        self.thickness = None
        self.flow_resistivity = None
        self.porosity = None
        self.uncertainty = None
        self.air_gap = None



        if self.opt_type == 'No Gap':
            if self.input_type == 'reflection':
                self.no_gap_data = self.load_to_array(no_gap_file)

            elif self.input_type == 'surface':
                self.no_gap_data = self.load_to_array(no_gap_file)

            elif self.input_type == 'absorption':
                    self.no_gap_data = self.load_to_array(no_gap_file,type='float')

        elif self.opt_type == 'Gap':
            if self.input_type == 'reflection':    
                self.gap_data = self.load_to_array(gap_file)

            elif self.input_type == 'surface':
                self.gap_data = self.load_to_array(gap_file)

            elif self.input_type == 'absorption':
                    self.gap_data = self.load_to_array(gap_file,type='float')

        elif self.opt_type == 'Dual':
            if self.input_type == 'reflection':
                self.no_gap_data = self.load_to_array(no_gap_file)
                self.gap_data = self.load_to_array(gap_file)

            elif self.input_type == 'surface':
                self.no_gap_data = self.load_to_array(no_gap_file)
                self.gap_data = self.load_to_array(gap_file)


            elif self.input_type == 'absorption':
                self.no_gap_data = self.load_to_array(no_gap_file,type='float')
                self.gap_data = self.load_to_array(gap_file,type='float')

    @property
    def frequency(self):
        #frequency range of interest

        if self.opt_type == 'No Gap':
            no_gap_freq = self.no_gap_data[:,0]
            return(no_gap_freq)

        elif self.opt_type == 'Gap':
            gap_freq = self.gap_data[:,0]
            return(gap_freq)

        elif self.opt_type == 'Dual':
            no_gap_freq = self.no_gap_data[:,0]
            gap_freq = self.gap_data[:,0]

            if np.array_equal(no_gap_freq,gap_freq) != True:
                raise ValueError("Frequencies must match between no gap and gap absorption curves")
            else:
                return(no_gap_freq)


    @property
    def meas_abs(self):
        #measured absorption coefficients
        if self.input_type == 'absorption':
            if self.opt_type == 'No Gap':
                no_gap_abs = self.no_gap_data[:,1]
                return([no_gap_abs,None])

            elif self.opt_type == 'Gap':
                gap_abs = self.gap_data[:,1]
                return([None,gap_abs])

            elif self.opt_type == 'Dual':
                no_gap_abs = self.no_gap_data[:,1]
                gap_abs = self.gap_data[:,1]
                return([no_gap_abs,gap_abs])

        elif self.input_type == 'reflection':
            if self.opt_type == 'No Gap':
                no_gap_abs = 1-abs(self.no_gap_data[:,1])**2
                return([no_gap_abs,None])

            elif self.opt_type == 'Gap':
                gap_abs = 1-abs(self.gap_data[:,1])**2
                return([None,gap_abs])

            elif self.opt_type == 'Dual':
                no_gap_abs = 1-abs(self.no_gap_data[:,1])**2
                gap_abs = 1-abs(self.gap_data[:,1])**2
                return([no_gap_abs,gap_abs])

        elif self.input_type == 'surface':
            if self.opt_type == 'No Gap':
                ngzs = self.no_gap_data
                ngr = (ngzs-self.Z0)/(ngzs+self.Z0)
                no_gap_abs = 1-abs(ngr[:,1])**2
                return([no_gap_abs,None])

            elif self.opt_type == 'Gap':
                gzs = self.gap_data
                gr = (gzs-self.Z0)/(gzs+self.Z0)
                gap_abs = 1-abs(gr[:,1])**2
                return([None,gap_abs])

            elif self.opt_type == 'Dual':
                ngzs = self.no_gap_data
                ngr = (ngzs-self.Z0)/(ngzs+self.Z0)
                no_gap_abs = 1-abs(ngr[:,1])**2

                gzs = self.gap_data
                gr = (gzs-self.Z0)/(gzs+self.Z0)
                gap_abs = 1-abs(gr[:,1])**2
                return([no_gap_abs,gap_abs])

    @property    
    def density_temp(self):
        #Temperature dependent density of air
        if self.temp is None:
            airdensity = self.density
        else:
            airdensity = ((1.07743*1e-5)*(self.temp**2))+((-0.004581339)*self.temp)+(1.294685259)
        return (airdensity)

    @property
    def soundspeed_temp(self):
        #Temperature dependent speed of sound in air
        if self.temp is None:
            soundspeed = self.speed
        else:
            soundspeed = (.6016*self.temp)+331.12
        return(soundspeed)

    @property
    def gamma_temp(self):
        #Temperature dependent specific heat ratio
        if self.temp is None:
            gamma = self.Cp/self.Cv
        else:
            Cp = (4.00166852057851e-07*self.temp**2)+(1.69769187986639e-05*self.temp)+(1.00559293937709)
            Cv = (3.65205412117683e-07*self.temp**2)+(2.88811127246258e-05*self.temp)+(7.17032243570935e-01)
            gamma = Cp/Cv
        return(gamma)

    @property
    def Cp_temp(self):
        #Temperature dependent specific heat ratio
        if self.temp is None:
            Cp = self.Cp
        else:
            Cp = (4.00166852057851e-07*self.temp**2)+(1.69769187986639e-05*self.temp)+(1.00559293937709)

        return(Cp)

    @property
    def Cv_temp(self):
        #Temperature dependent specific heat ratio
        if self.temp is None:
            Cv = self.Cv
        else:
            Cv = (3.65205412117683e-07*self.temp**2)+(2.88811127246258e-05*self.temp)+(7.17032243570935e-01)

        return(Cv)

    @property
    def viscosity_temp(self):
        #Temperature dependent viscosity of air
        if self.temp is None:
            visc = self.viscosity
            return(visc)
        else:
            visc = (-3.52159145081837e-11*self.temp**2)+(4.93272149610679e-8*self.temp)+(1.72293415521214e-5)
            return(visc)

    @property
    def Pr_temp(self):
        #Temperature dependent prandtl number
        if self.temp is None:
            Prandtl = self.Pr
        else:
            Prandtl = (7.06471476243448e-07*self.temp**2)+(-2.20826446051168e-04*self.temp)+(0.71980868)
        return(Prandtl)

    @property
    def Z0(self):
        #Characteristic Impedance of Air
        z0 = self.density_temp*self.soundspeed_temp
        return(z0)

    def _predictionJCA(self,
                       parameters: dict) -> np.ndarray:
        """
        Calculates the predicted frequency dependent absorption curve using the parameters identified in the
        optimization procedure defined in the find_values methods

        Parameters
        ----------
        parameters (dict):
            dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
            viscous characteristic length, thermal characteristic length, and air gap of the sample.

        Returns
        -------
        predicted (ndarray):
            2D array of frequencies and predicted absorption coefficients 

        """

        dummy_struct = AcousticTMM(air_temperature=self.temp,
                                   sound_speed=self.soundspeed_temp,
                                   air_density=self.density_temp,
                                   Cp=self.Cp,
                                   Cv=self.Cv,
                                   viscosity=self.viscosity_temp,
                                   Pr=self.Pr_temp,
                                   P0=self.P0)

        t = parameters['thickness']
        fr = parameters['flow resistivity']
        phi = parameters['porosity']
        tort = parameters['tortuosity']
        vcl = parameters['viscous characteristic length']
        tcl = parameters['thermal characteristic length']
        air_gap = parameters['air gap']

        layer = dummy_struct.Add_JCA_Layer(t,fr,phi,tort,vcl,tcl)
        air = dummy_struct.Add_Air_Layer(thickness = air_gap)
        dummy_struct.frequency = self.frequency

        if self.opt_type == 'Gap' or self.opt_type == 'No Gap':
            s = dummy_struct.assemble_structure(layer,air)
            predicted = dummy_struct.absorption(s)[:,1]
            return(predicted)

        elif self.opt_type == 'Dual':
            no_gap_s = dummy_struct.assemble_structure(layer)
            gap_s = dummy_struct.assemble_structure(layer,air)

            no_gap_pred = dummy_struct.absorption(no_gap_s)[:,1]
            gap_pred = dummy_struct.absorption(gap_s)[:,1]

            return([no_gap_pred,gap_pred])

    def _error(self,
               x: list) -> float:
        """
        Function that is minimized in the optimization routine. Calculates the error between the measured (impedance tube)
        and predicted (TMM) absorption coefficients.

        Parameters
        ----------
        x (list):
            list structure containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length,
            thermal characteristic length, and air gap thickness of the sample (in that order).

        Returns
        -------
        err (float):
            if opt_type is 'No Gap' or 'Gap' --> sum of the absolute square difference between measured and predicted absorption coefficients across all specified frequencies.
            if opt_type is 'Dual', the error for each mounting condition is averaged into a single error metric

        """

        t = x[0]
        fr = x[1]
        phi = x[2]
        tort = x[3]
        vcl = x[4]
        tcl = x[5]
        air = x[6]

        params = {'thickness':t,'flow resistivity':fr,'porosity':phi,'tortuosity':tort,'viscous characteristic length':vcl,'thermal characteristic length':tcl,'air gap':air}

        A = self._predictionJCA(params)

        if self.opt_type == 'No Gap':
            err = np.sum(np.abs(np.diff(A-self.meas_abs[0]))**2)
            return(err)

        elif self.opt_type == 'Gap':
            err = np.sum(np.abs(np.diff(A-self.meas_abs[1]))**2)
            return(err)

        elif self.opt_type == 'Dual':
            err = (np.sum(np.abs(np.diff(A[0]-self.meas_abs[0]))**2)+np.sum(np.abs(np.diff(A[1]-self.meas_abs[1]))**2))/2
            return(err)

    def _bounds(self,
                tort: float) -> tuple:
        """
        Defines the lower and upper boundary values for the parameters in the optimization routine. Bounds for thickness, flow resistivity,
        porosity, and air gap are calculated using the supplied "known" values and the uncertainty.  Tortuosity, viscous, and thermal characteristic
        length bounds are defined in:

        Atalla, Youssef & Panneton, R.. (2005). Inverse acoustical characterization of open cell porous 
        media using impedance tube measurements. Canadian Acoustics - Acoustique Canadienne. 33.

        Parameters
        ----------
        tort (float):
            tortuosity --> defined either as the initial guess or the most recent value returned by the optimization routine.

        Returns
        -------
        bounds (tuple):
            contains tuples of the lower and upper bounds for each parameter.

        """

        l_unc = 1-self.uncertainty
        u_unc = 1+self.uncertainty

        t_lb = l_unc*self.thickness
        t_ub = u_unc*self.thickness


        fr_lb = l_unc*self.flow_resistivity
        fr_ub = u_unc*self.flow_resistivity

        phi_lb = l_unc*self.porosity
        phi_ub = u_unc*self.porosity

        air_lb = l_unc*self.air_gap
        air_ub = u_unc*self.air_gap

        tort_lb = 1
        tort_ub = 4

        vcl_lb = ((1/3.3)*np.sqrt((8*tort*self.viscosity_temp)/(self.flow_resistivity*self.porosity)))/(1e-6)
        vcl_ub =((1/.3)*np.sqrt((8*tort*self.viscosity_temp)/(self.flow_resistivity*self.porosity)))/(1e-6)

        tcl_lb = vcl_lb
        tcl_ub = vcl_ub

        tort_b = (tort_lb,tort_ub)
        vcl_b = (vcl_lb,vcl_ub)
        tcl_b = (tcl_lb,tcl_ub)
        phi_b = (phi_lb,phi_ub)
        fr_b = (fr_lb,fr_ub)
        t_b = (t_lb,t_ub)
        air_b = (air_lb,air_ub)

        bounds = (t_b,fr_b,phi_b,tort_b,vcl_b,tcl_b,air_b)

        return (bounds)

    def Inverse(self,
                thickness: float,
                flow_resistivity: float,
                porosity: float,
                air_gap: float=0,
                uncertainty: float=0.01,
                early_stopping: float=1e-15,
                verbose: bool=False) -> dict:
        """
        Optimization routine for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths).
        The routine uses the Sequential Least Squares Programming method (https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html)
        to minimize the error between predicted and actual absorption coefficients.

        If the early stopping criterion is not met after an initial guess, a unique grid search of the parameter space is crafted to help ensure
        the global minimum is found (ie the correct values for the parameters are identified).

        Parameters
        ----------
        thickness (float):
            The measured thickness of the sample [mm]

        flow_resistivity (float):
            The measured flow resistivity of the sample [Pa*s/m2]

        porosity (float):
            The measured porosity of the sample [-]

        air_gap (float):
            The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

        uncertainty (float):
            A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements
            of the sample [0 - 1].  Increasing the uncertainty value will result in a wider search of the parameter space.

        early_stopping (float):
            criterion for ending the search early.  If the calculated error at any given step is less than this value, the routine will terminate
            and return the results. The default value of 1e-15 has been tested on a number of simulated cases.

        verbose (bool):
             If true, the progress of the optimization routine will print to the console.

        Returns
        -------
        result_dict (dict):
            dictionary containing the identified parameters associated with the lowest calculated error.

        """
        self.thickness = thickness
        self.flow_resistivity = flow_resistivity
        self.porosity = porosity
        self.air_gap = air_gap

        if uncertainty >= 0 and uncertainty <= 1:
            self.uncertainty = uncertainty

        else:
            print("Uncertainty must be between 0 and 1, reverting to default uncertainty of 1.0%!")
            self.uncertainty = 0.01

        init_tort = 2.5

        bnds = self._bounds(init_tort)
        x0 = [self.thickness,self.flow_resistivity,self.porosity,init_tort,(bnds[4][1]-bnds[4][0])/2,(bnds[5][1]-bnds[5][0])/2,self.air_gap] 
        cons = ({'type':'ineq','fun':lambda x:x[5]-x[4]})
        res = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})
        err = res.fun
        results = np.around(res.x,decimals=3)

        if err < early_stopping:
            result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}  
            if verbose == True:
                print(f"Early stopping criteria has been met. The current lowest error is: {err}")
            return(result_dict)

        elif err > early_stopping:
            bnds_temp = self._bounds(results[3])
            tort_grid = [bnds_temp[3][0],(.75*bnds_temp[3][0]+.25*bnds_temp[3][1]),(.5*bnds_temp[3][0]+.5*bnds_temp[3][1]),(.25*bnds_temp[3][0]+.75*bnds_temp[3][1]),bnds_temp[3][1]]
            vcl_grid = [bnds_temp[4][0],(.75*bnds_temp[4][0]+.25*bnds_temp[4][1]),(.5*bnds_temp[4][0]+.5*bnds_temp[4][1]),(.25*bnds_temp[4][0]+.75*bnds_temp[4][1]),bnds_temp[4][1]]
            tcl_grid = [bnds_temp[5][0],(.75*bnds_temp[5][0]+.25*bnds_temp[5][1]),(.5*bnds_temp[5][0]+.5*bnds_temp[5][1]),(.25*bnds_temp[5][0]+.75*bnds_temp[5][1]),bnds_temp[5][1]]

            loop_len = len(tort_grid)*len(vcl_grid)*len(tcl_grid)
            i = 1

            for to in tort_grid: 
                for v in vcl_grid:
                    for tc in tcl_grid:
                        phi = self.porosity
                        fr = self.flow_resistivity
                        t = self.thickness
                        air = self.air_gap
                        x0 = [t,fr,phi,to,v,tc,air]

                        grid_search = round((i/loop_len)*100,2)
                        bnds = self._bounds(results[3])
                        res2 = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})

                        if verbose == True:
                            print(f"{grid_search}% of the parameter space has been searched. The current lowest error is: {err}")


                        if res2.fun < err:
                            err = res2.fun
                            results = np.around(res2.x,decimals=3)

                            if err < early_stopping:
                                result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}
                                if verbose == True:
                                    print(f"Early stopping criteria has been met. The current lowest error is: {err}")
                                return(result_dict)
                        i+=1


            print("Warning: stopping criterion not met during parameter search. Double check known inputs and/or consider increasing the uncertainty value of the knowns.")
            result_dict = {'thickness': results[0],
                           'flow resistivity': results[1],
                           'porosity': results[2],
                           'tortuosity': results[3],
                           'viscous characteristic length': results[4],
                           'thermal characteristic length': results[5],
                           'air gap': results[6],
                           'error': err}

            return(result_dict)

    def Indirect(self,
                 thickness: float,
                 porosity: float,
                 flow_resistivity: float=None,
                 air_gap: float=0) -> dict:
        """
        Indirect method for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths), based on:

        Panneton, R. & Salissou, Yacoubou. (2009). Indirect acoustical characterization of sound absorbing materials.. 
        The Journal of the Acoustical Society of America. 126. 2297. 10.1121/1.3249416.

        This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples and 
        it is susceptible to uncertainty in the measurements of thickness, porosity, flow resistivity, air gap, 
        and the acoustic indicator(s) -- but the advantage is that it does not require a flow resistivity measurement in order to 
        estimate the JCA parameters.

        Parameters
        ----------
        thickness (float):
            The measured thickness of the sample [mm]

        porosity (float):
            The measured porosity of the sample [-]

        flow_resistivity (float):
            Optional, the measured flow resistivity of the sample [Pa*s/m2].  If no flow resistivity is specified, the value
            will be estimated automatically.

        air_gap (float):
            The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

        Returns
        -------
        result_dict (dict):
            dictionary containing the identified parameters associated with the lowest calculated error.

        """

        self.thickness = thickness
        self.porosity = porosity
        self.air_gap = air_gap

        if flow_resistivity == None:
            self.flow_resistivity = None
            return_preds = True
        else:
            self.flow_resistivity = flow_resistivity
            return_preds = False

        air_gap = self.air_gap/1000
        thickness = self.thickness/1000
        w = 2*np.pi*self.frequency
        k0 = w / self.soundspeed_temp

        if self.input_type == 'absorption':
            raise ValueError('Absorption data cannot be used for Indirect characterizations, please specify reflection or surface impedance data')

        elif self.opt_type == 'Gap' or self.opt_type == 'No Gap':
            raise ValueError('Dual mount types are required for Indirect characterizations')

        elif self.input_type == 'surface':
            Zs_NG = self.no_gap_data[:,1]
            Zs_G = self.gap_data[:,1]

        elif self.input_type == 'reflection':
            Zs_NG = self.Z0*((1+self.no_gap_data[:,1])/(1-self.no_gap_data[:,1]))
            Zs_G = self.Z0*((1+self.gap_data[:,1])/(1-self.gap_data[:,1]))


        T11A = np.cos(k0*air_gap)
        T21A = (1j/self.Z0)*np.sin(k0*air_gap)
        Zs_A = T11A/T21A

        Zp = np.sqrt((Zs_NG*(Zs_G-Zs_A))+(Zs_G*Zs_A))
        kp = np.arctan(Zp/(1j*Zs_NG))/thickness

        test = np.column_stack((self.frequency,np.real(Zp/(1j*Zs_NG))))

        try:
            cutoff = test[np.where(test[:-1] * test[1:] < 0 )[0]]
            cutoff = np.abs(np.min(cutoff[:,0]))
        except ValueError:
            cutoff = np.max(self.frequency)

        peff = Zp*kp/w
        keff = w*np.divide(Zp,kp)

        re_peff = np.real(peff)
        im_peff = np.imag(peff)

        fr = np.column_stack((self.frequency**2,-im_peff*w))
        fr_curve = fr[np.where(fr[:,0] <= cutoff**2)]
        slope1,intercept1,r_value1,p_value1,std_err1 = scipy.stats.linregress(fr_curve[:,0],fr_curve[:,1])

        jca_fr = np.abs(intercept1)

        #######################################################################################################

        if return_preds == False:
            tort = (self.porosity/self.density_temp)*(re_peff-np.sqrt((im_peff**2)-((self.flow_resistivity/w)**2)))
        elif return_preds == True:
            tort = (self.porosity/self.density_temp)*(re_peff-np.sqrt((im_peff**2)-((jca_fr/w)**2)))
        tort1 = np.column_stack((self.frequency,tort))
        tort_curve = tort1[np.where(tort1[:,0] <= cutoff )]
        jca_tort = np.abs(np.mean(tort_curve[:,1]))

        #######################################################################################################

        phi_num = (self.density_temp*jca_tort)
        if return_preds == False:
            phi_denom = re_peff-np.sqrt((im_peff**2)-((self.flow_resistivity/w)**2))
        elif return_preds == True:
            phi_denom = re_peff-np.sqrt((im_peff**2)-((jca_fr/w)**2))
        phi = phi_num/phi_denom
        phi1 = np.column_stack((self.frequency,phi))
        phi_curve = phi1[np.where((phi1[:,0] <= cutoff) & (phi1[:,0] >= 500))]
        jca_phi = np.abs(np.mean(phi_curve[:,1]))

        ####################################################################################################### 

        if return_preds == False:
            vcl = jca_tort*np.sqrt((2*self.density_temp*self.viscosity_temp)/((w*self.porosity*im_peff)*((self.density_temp*jca_tort)-(self.porosity*re_peff))))/(1e-6)
        elif return_preds == True:
            vcl = jca_tort*np.sqrt((2*self.density_temp*self.viscosity_temp)/((w*jca_phi*im_peff)*((self.density_temp*jca_tort)-(jca_phi*re_peff))))/(1e-6)
        vcl1 = np.column_stack((self.frequency,vcl))
        vcl_curve = vcl1[np.where(vcl1[:,0] <= cutoff )]
        jca_vcl = np.abs(np.mean(vcl_curve[:,1]))

        #######################################################################################################        

        tcl0 = np.sqrt((2*self.viscosity_temp)/(w*self.density_temp*self.Pr_temp))
        if return_preds == False:
            tcl1 = ((1-((keff*self.porosity)/(self.gamma_temp*self.P0)))/(1-((keff*self.porosity)/self.P0)))**2
        elif return_preds == True:
            tcl1 = ((1-((keff*jca_phi)/(self.gamma_temp*self.P0)))/(1-((keff*jca_phi)/self.P0)))**2
        tcl2 = 1/(-np.imag(tcl1))
        tcl3 = np.sqrt(2*tcl2)       
        tcl4 = tcl0*tcl3/(1e-6)
        tcl5 = np.column_stack((self.frequency,tcl4))
        tcl_curve = tcl5[np.where((tcl5[:,0] <= cutoff) & (tcl5[:,0] >= 500))]
        jca_tcl = np.abs(np.mean(tcl_curve[:,1]))

        #######################################################################################################           

        if return_preds == False:
            kn0 = (self.porosity*self.viscosity_temp)/(w*self.density_temp*self.Pr_temp)
        elif return_preds == True:
            kn0 = (jca_phi*self.viscosity_temp)/(w*self.density_temp*self.Pr_temp)
        kn1 = 1/np.sqrt(-np.real(tcl1))
        kn3 = kn0*kn1/(1e-10)
        kn4 = np.column_stack((self.frequency,kn3))
        k0_curve = kn4[np.where((kn4[:,0] <= cutoff) & (kn4[:,0] >= 500))]
        jca_k0 = np.abs(np.mean(k0_curve[:,1]))

        result_dict = {'thickness': self.thickness,
                       'flow resistivity': self.flow_resistivity,
                       'porosity': self.porosity,
                       'tortuosity': round(jca_tort,4),
                        'viscous characteristic length': round(jca_vcl,4),
                        'thermal characteristic length': round(jca_tcl,4),
                        'air gap': self.air_gap} 

        full_predicted_dict = {'thickness': self.thickness,
                               'flow resistivity': jca_fr,
                               'porosity': jca_phi,
                               'tortuosity': jca_tort,
                               'viscous characteristic length': jca_vcl,
                               'thermal characteristic length': jca_tcl,
                               'air gap': self.air_gap} 

        if return_preds == False:
            return(result_dict)

        elif return_preds == True:
            return(full_predicted_dict)


    def Hybrid(self,
               thickness: float,
               porosity: float,
               flow_resistivity: float=None,
               air_gap: float=0,
               uncertainty: float=0.01,
               early_stopping: float=1e-15,
               verbose: bool=False) -> dict:
        """
        The Hybrid routine uses both the inverse and indirect characterization methods to identify the JCA parameters.  The parameters are 
        first estimated using the indirect method and the error between measured and estimated absorption coefficients is determined.

        If the early stopping criterion is not met using the indirect method, the estimate is then used as the initial guess for the inverse
        procedure and to calculate the bounds of the grid search.

        This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples.
        The advantage of using this procedure compared to the inverse or indirect methods alone are:
            Inverse: The Hybrid method does not require flow resitivity to be known.
            Indirect:  The Hybrid method is much less susceptible to uncertainty in the measurements.

        Parameters
        ----------
        thickness (float):
            The measured thickness of the sample [mm]

        flow_resistivity (float):
            The measured flow resistivity of the sample [Pa*s/m2]

        porosity (float):
            The measured porosity of the sample [-]

        air_gap (float):
            The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

        uncertainty (float):
            A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements
            of the sample [0 - 1].  Increasing the uncertainty value will result in a wider search of the parameter space.

        early_stopping (float):
            criterion for ending the search early.  If the calculated error at any given step is less than this value, the routine will terminate
            and return the results. The default value of 1e-15 has been tested on a number of simulated cases.

        verbose (bool):
             If true, the progress of the optimization routine will print to the console.

        Returns
        -------
        result_dict (dict):
            dictionary containing the identified parameters associated with the lowest calculated error.

        """
        self.thickness = thickness
        self.porosity = porosity
        self.air_gap = air_gap
        if uncertainty >= 0 and uncertainty <= 1:
            self.uncertainty = uncertainty

        else:
            print("Uncertainty must be between 0 and 1, reverting to default uncertainty of 1.0%!")
            self.uncertainty = 0.01


        indirect_results = self.Indirect(self.thickness,self.porosity,flow_resistivity,self.air_gap)

        if np.isnan(indirect_results['thermal characteristic length']):
            indirect_results['thermal characteristic length'] = indirect_results['viscous characteristic length']

        self.flow_resistivity = indirect_results['flow resistivity']

        init_tort = indirect_results['tortuosity']

        bnds = self._bounds(init_tort)
        x0 = [self.thickness,indirect_results['flow resistivity'],indirect_results['porosity'],init_tort,indirect_results['viscous characteristic length'],indirect_results['thermal characteristic length'],self.air_gap] 
        cons = ({'type':'ineq','fun':lambda x:x[5]-x[4]})
        res = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})
        err = res.fun
        results = np.around(res.x,decimals=3)

        if err < early_stopping:
            result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}  
            if verbose == True:
                print(f"Early stopping criteria has been met. The current lowest error is: {err}")
            return(result_dict)

        elif err > early_stopping:
            bnds_temp = self._bounds(results[3])
            tort_grid = [bnds_temp[3][0],(.75*bnds_temp[3][0]+.25*bnds_temp[3][1]),(.5*bnds_temp[3][0]+.5*bnds_temp[3][1]),(.25*bnds_temp[3][0]+.75*bnds_temp[3][1]),bnds_temp[3][1]]
            vcl_grid = [bnds_temp[4][0],(.75*bnds_temp[4][0]+.25*bnds_temp[4][1]),(.5*bnds_temp[4][0]+.5*bnds_temp[4][1]),(.25*bnds_temp[4][0]+.75*bnds_temp[4][1]),bnds_temp[4][1]]
            tcl_grid = [bnds_temp[5][0],(.75*bnds_temp[5][0]+.25*bnds_temp[5][1]),(.5*bnds_temp[5][0]+.5*bnds_temp[5][1]),(.25*bnds_temp[5][0]+.75*bnds_temp[5][1]),bnds_temp[5][1]]

            loop_len = len(tort_grid)*len(vcl_grid)*len(tcl_grid)
            i = 1

            for to in tort_grid: 
                for v in vcl_grid:
                    for tc in tcl_grid:
                        phi = self.porosity
                        fr = self.flow_resistivity
                        t = self.thickness
                        air = self.air_gap
                        x0 = [t,fr,phi,to,v,tc,air]

                        grid_search = round((i/loop_len)*100,2)
                        bnds = self._bounds(results[3])
                        res2 = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})

                        if verbose == True:
                            print(f"{grid_search}% of the parameter space has been searched. The current lowest error is: {err}")


                        if res2.fun < err:
                            err = res2.fun
                            results = np.around(res2.x,decimals=3)

                            if err < early_stopping:
                                result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}
                                if verbose == True:
                                    print(f"Early stopping criteria has been met. The current lowest error is: {err}")
                                return(result_dict)
                        i+=1


            print("Warning: stopping criterion not met during parameter search. Double check known inputs and/or consider increasing the uncertainty value of the knowns.")
            result_dict = {'thickness': results[0],
                           'flow resistivity': results[1],
                           'porosity': results[2],
                           'tortuosity': results[3],
                           'viscous characteristic length': results[4],
                           'thermal characteristic length': results[5],
                           'air gap': results[6],
                           'error': err}

            return(result_dict)


    def stats(self,
              parameters:dict) -> dict:
        """
        Calculates statistics about the parameters identified in the optimization routine via linear regression of the predicted vs measured
        absorption coefficients.

        Parameters
        ----------
        parameters (dict):
            dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
            viscous characteristic length, thermal characteristic length, and air gap of the sample.

        Returns
        -------
        stats (dict):
            dictionary containing the slope, intercept, r value, p value, and std error returned from the linear regression.
            If 'Dual' opt_type is specified, the statistics for each mounting condition are averaged.

        """
        if self.opt_type == 'No Gap':
            x = self.meas_abs[0]
            y = self._predictionJCA(parameters)

            slope,intercept,r_value,p_value,std_err = scipy.stats.linregress(x,y)
            stats = {'slope':slope,'intercept':intercept,'r_value':r_value,'p_value':p_value,'std_err':std_err}

            return(stats)

        elif self.opt_type == 'Gap':
            x = self.meas_abs[1]
            y = self._predictionJCA(parameters)

            slope,intercept,r_value,p_value,std_err = scipy.stats.linregress(x,y)
            stats = {'slope':slope,'intercept':intercept,'r_value':r_value,'p_value':p_value,'std_err':std_err}

            return(stats)

        elif self.opt_type == 'Dual':
            x1 = self.meas_abs[0]
            y1 = self._predictionJCA(parameters)[0]

            slope1,intercept1,r_value1,p_value1,std_err1 = scipy.stats.linregress(x1,y1)

            x2 = self.meas_abs[1]
            y2 = self._predictionJCA(parameters)[1]

            slope2,intercept2,r_value2,p_value2,std_err2 = scipy.stats.linregress(x2,y2)

            slope = np.abs((slope1+slope2)/2)
            intercept = np.abs((intercept1+intercept2)/2)
            r_value = np.abs((r_value1+r_value2)/2)
            p_value = np.abs((p_value1+p_value2)/2)
            std_err = np.abs((std_err1+std_err2)/2)

            stats = {'slope':slope,'intercept':intercept,'r_value':r_value,'p_value':p_value,'std_err':std_err}

            return(stats)

    def plot_comparison(self,
                        parameters:dict) -> None:
        """
        Plots the predicted and measured frequency dependent absorption coefficients.

        Parameters
        ----------
        parameters (dict):
            dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
            viscous characteristic length, thermal characteristic length, and air gap of the sample.

        """

        f, ax = plt.subplots(1)

        if self.opt_type == 'No Gap':
            actual = self.meas_abs[0]
            predicted = self._predictionJCA(parameters)

            ax.plot(self.frequency,actual,label='Actual')
            ax.plot(self.frequency,predicted,label='Predicted')

            ax.legend(loc="lower right")
            ax.set_ylim(bottom=0)

            plt.show()


        elif self.opt_type == 'Gap':
            actual = self.meas_abs[1]
            predicted = self._predictionJCA(parameters)

            ax.plot(self.frequency,actual,label='Actual')
            ax.plot(self.frequency,predicted,label='Predicted')

            ax.legend(loc="lower right")
            ax.set_ylim(bottom=0)

            plt.show()

        elif self.opt_type == 'Dual':
            no_gap_pred = self._predictionJCA(parameters)[0]
            gap_pred = self._predictionJCA(parameters)[1]
            no_gap_actual = self.meas_abs[0]
            gap_actual = self.meas_abs[1]

            ax.plot(self.frequency,no_gap_actual,label='No Gap Actual')
            ax.plot(self.frequency,no_gap_pred,label='No Gap Predicted')
            ax.plot(self.frequency,gap_actual,label='Gap Actual')
            ax.plot(self.frequency,gap_pred,label='Gap Predicted')

            ax.legend(loc="lower right")
            ax.set_ylim(bottom=0)

            plt.show()

    def to_csv(self,
               FileName: str,
               parameters: dict) -> None:
        """
        Saves the identified parameters and the measured/predicted absorption curves to a csv file.

        Parameters
        ----------
        FileName (str):
            Name of the csv file to save data to.

        parameters (dict):
            dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
            viscous characteristic length, thermal characteristic length, and air gap of the sample.

        """

        if ".csv" in FileName:
            file = FileName
        else:
            file = FileName+".csv"


        if self.opt_type == 'No Gap':
            actual = self.meas_abs[0]
            predicted = self._predictionJCA(parameters)
            all_data = {'frequency':self.frequency,'measured':actual,'predicted':predicted}


        elif self.opt_type == 'Gap':
            actual = self.meas_abs[1]
            predicted = self._predictionJCA(parameters)
            all_data = {'frequency':self.frequency,'measured':actual,'predicted':predicted}

        elif self.opt_type == 'Dual':
            no_gap_pred = self._predictionJCA(parameters)[0]
            gap_pred = self._predictionJCA(parameters)[1]
            no_gap_actual = self.meas_abs[0]
            gap_actual = self.meas_abs[1]

            all_data = {'frequency':self.frequency,'no gap measured':no_gap_actual,'no gap predicted':no_gap_pred,'gap measured':gap_actual,'gap predicted':gap_pred}

        with open(file, 'w') as f:
            [f.write('{0},{1}\n'.format(key, value)) for key, value in parameters.items()]
            writer = csv.writer(f, delimiter = ",",lineterminator='\n')
            writer.writerow(all_data.keys())
            writer.writerows(zip(*all_data.values()))

    def load_to_array(self,
                      FileName: str,
                      type: str ='complex') -> None:
        """
        Loads data from csv or excel file.

        Parameters
        ----------
        FileName (str):
            Name of the file to load data from

        type (str):
            type of data being loaded -- either complex or floating point data

        """
        if type == 'complex':
            try:
                data = np.asarray(pd.read_csv(FileName,header=None).map(lambda s: np.complex128(s.replace('i', 'j'))))
            except Exception:
                data = np.asarray(pd.read_excel(FileName,header=None).map(lambda s: np.complex128(s.replace('i', 'j'))))

        elif type == 'float':
            try:
                data = np.asarray(pd.read_csv(FileName,header=None))
            except Exception:
                data = np.asarray(pd.read_excel(FileName,header=None))  

        return (data)

    def to_database(self,
                    parameters: dict,
                    layer_name: str) -> None:
        """
        Saves the identified parameters as a new layer in a database.

        Parameters
        ----------
        parameters (dict):
            dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
            viscous characteristic length, thermal characteristic length, and air gap of the sample.

        layer_name (str):
            Specifies the name of the layer.  Must be a unique identifier.
        """

        thickness = parameters['thickness']
        flow_resistivity = parameters['flow resistivity']
        porosity = parameters['porosity']
        tortuosity = parameters['tortuosity']
        viscous_characteristic_length = parameters['viscous characteristic length']
        thermal_characteristic_length = parameters['thermal characteristic length']

        s = AcoustiBase()
        data = s.pull('LAYER')
        id1 = len(data)+1
        params = [id1,layer_name,'identified','null',thickness,flow_resistivity,porosity,tortuosity,viscous_characteristic_length,thermal_characteristic_length,'null','null','null','null','null','null']
        s.execute(params,'LAYER')
        s.commit()
        s.close()

_predictionJCA(parameters)

Calculates the predicted frequency dependent absorption curve using the parameters identified in the optimization procedure defined in the find_values methods

Parameters

parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.

Returns

predicted (ndarray): 2D array of frequencies and predicted absorption coefficients

Source code in src/acoustipy/Params.py
def _predictionJCA(self,
                   parameters: dict) -> np.ndarray:
    """
    Calculates the predicted frequency dependent absorption curve using the parameters identified in the
    optimization procedure defined in the find_values methods

    Parameters
    ----------
    parameters (dict):
        dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
        viscous characteristic length, thermal characteristic length, and air gap of the sample.

    Returns
    -------
    predicted (ndarray):
        2D array of frequencies and predicted absorption coefficients 

    """

    dummy_struct = AcousticTMM(air_temperature=self.temp,
                               sound_speed=self.soundspeed_temp,
                               air_density=self.density_temp,
                               Cp=self.Cp,
                               Cv=self.Cv,
                               viscosity=self.viscosity_temp,
                               Pr=self.Pr_temp,
                               P0=self.P0)

    t = parameters['thickness']
    fr = parameters['flow resistivity']
    phi = parameters['porosity']
    tort = parameters['tortuosity']
    vcl = parameters['viscous characteristic length']
    tcl = parameters['thermal characteristic length']
    air_gap = parameters['air gap']

    layer = dummy_struct.Add_JCA_Layer(t,fr,phi,tort,vcl,tcl)
    air = dummy_struct.Add_Air_Layer(thickness = air_gap)
    dummy_struct.frequency = self.frequency

    if self.opt_type == 'Gap' or self.opt_type == 'No Gap':
        s = dummy_struct.assemble_structure(layer,air)
        predicted = dummy_struct.absorption(s)[:,1]
        return(predicted)

    elif self.opt_type == 'Dual':
        no_gap_s = dummy_struct.assemble_structure(layer)
        gap_s = dummy_struct.assemble_structure(layer,air)

        no_gap_pred = dummy_struct.absorption(no_gap_s)[:,1]
        gap_pred = dummy_struct.absorption(gap_s)[:,1]

        return([no_gap_pred,gap_pred])

_error(x)

Function that is minimized in the optimization routine. Calculates the error between the measured (impedance tube) and predicted (TMM) absorption coefficients.

Parameters

x (list): list structure containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap thickness of the sample (in that order).

Returns

err (float): if opt_type is 'No Gap' or 'Gap' --> sum of the absolute square difference between measured and predicted absorption coefficients across all specified frequencies. if opt_type is 'Dual', the error for each mounting condition is averaged into a single error metric

Source code in src/acoustipy/Params.py
def _error(self,
           x: list) -> float:
    """
    Function that is minimized in the optimization routine. Calculates the error between the measured (impedance tube)
    and predicted (TMM) absorption coefficients.

    Parameters
    ----------
    x (list):
        list structure containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length,
        thermal characteristic length, and air gap thickness of the sample (in that order).

    Returns
    -------
    err (float):
        if opt_type is 'No Gap' or 'Gap' --> sum of the absolute square difference between measured and predicted absorption coefficients across all specified frequencies.
        if opt_type is 'Dual', the error for each mounting condition is averaged into a single error metric

    """

    t = x[0]
    fr = x[1]
    phi = x[2]
    tort = x[3]
    vcl = x[4]
    tcl = x[5]
    air = x[6]

    params = {'thickness':t,'flow resistivity':fr,'porosity':phi,'tortuosity':tort,'viscous characteristic length':vcl,'thermal characteristic length':tcl,'air gap':air}

    A = self._predictionJCA(params)

    if self.opt_type == 'No Gap':
        err = np.sum(np.abs(np.diff(A-self.meas_abs[0]))**2)
        return(err)

    elif self.opt_type == 'Gap':
        err = np.sum(np.abs(np.diff(A-self.meas_abs[1]))**2)
        return(err)

    elif self.opt_type == 'Dual':
        err = (np.sum(np.abs(np.diff(A[0]-self.meas_abs[0]))**2)+np.sum(np.abs(np.diff(A[1]-self.meas_abs[1]))**2))/2
        return(err)

_bounds(tort)

Defines the lower and upper boundary values for the parameters in the optimization routine. Bounds for thickness, flow resistivity, porosity, and air gap are calculated using the supplied "known" values and the uncertainty. Tortuosity, viscous, and thermal characteristic length bounds are defined in:

Atalla, Youssef & Panneton, R.. (2005). Inverse acoustical characterization of open cell porous media using impedance tube measurements. Canadian Acoustics - Acoustique Canadienne. 33.

Parameters

tort (float): tortuosity --> defined either as the initial guess or the most recent value returned by the optimization routine.

Returns

bounds (tuple): contains tuples of the lower and upper bounds for each parameter.

Source code in src/acoustipy/Params.py
def _bounds(self,
            tort: float) -> tuple:
    """
    Defines the lower and upper boundary values for the parameters in the optimization routine. Bounds for thickness, flow resistivity,
    porosity, and air gap are calculated using the supplied "known" values and the uncertainty.  Tortuosity, viscous, and thermal characteristic
    length bounds are defined in:

    Atalla, Youssef & Panneton, R.. (2005). Inverse acoustical characterization of open cell porous 
    media using impedance tube measurements. Canadian Acoustics - Acoustique Canadienne. 33.

    Parameters
    ----------
    tort (float):
        tortuosity --> defined either as the initial guess or the most recent value returned by the optimization routine.

    Returns
    -------
    bounds (tuple):
        contains tuples of the lower and upper bounds for each parameter.

    """

    l_unc = 1-self.uncertainty
    u_unc = 1+self.uncertainty

    t_lb = l_unc*self.thickness
    t_ub = u_unc*self.thickness


    fr_lb = l_unc*self.flow_resistivity
    fr_ub = u_unc*self.flow_resistivity

    phi_lb = l_unc*self.porosity
    phi_ub = u_unc*self.porosity

    air_lb = l_unc*self.air_gap
    air_ub = u_unc*self.air_gap

    tort_lb = 1
    tort_ub = 4

    vcl_lb = ((1/3.3)*np.sqrt((8*tort*self.viscosity_temp)/(self.flow_resistivity*self.porosity)))/(1e-6)
    vcl_ub =((1/.3)*np.sqrt((8*tort*self.viscosity_temp)/(self.flow_resistivity*self.porosity)))/(1e-6)

    tcl_lb = vcl_lb
    tcl_ub = vcl_ub

    tort_b = (tort_lb,tort_ub)
    vcl_b = (vcl_lb,vcl_ub)
    tcl_b = (tcl_lb,tcl_ub)
    phi_b = (phi_lb,phi_ub)
    fr_b = (fr_lb,fr_ub)
    t_b = (t_lb,t_ub)
    air_b = (air_lb,air_ub)

    bounds = (t_b,fr_b,phi_b,tort_b,vcl_b,tcl_b,air_b)

    return (bounds)

Inverse(thickness, flow_resistivity, porosity, air_gap=0, uncertainty=0.01, early_stopping=1e-15, verbose=False)

Optimization routine for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths). The routine uses the Sequential Least Squares Programming method (https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html) to minimize the error between predicted and actual absorption coefficients.

If the early stopping criterion is not met after an initial guess, a unique grid search of the parameter space is crafted to help ensure the global minimum is found (ie the correct values for the parameters are identified).

Parameters

thickness (float): The measured thickness of the sample [mm]

flow_resistivity (float): The measured flow resistivity of the sample [Pa*s/m2]

porosity (float): The measured porosity of the sample [-]

air_gap (float): The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

uncertainty (float): A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements of the sample [0 - 1]. Increasing the uncertainty value will result in a wider search of the parameter space.

early_stopping (float): criterion for ending the search early. If the calculated error at any given step is less than this value, the routine will terminate and return the results. The default value of 1e-15 has been tested on a number of simulated cases.

verbose (bool): If true, the progress of the optimization routine will print to the console.

Returns

result_dict (dict): dictionary containing the identified parameters associated with the lowest calculated error.

Source code in src/acoustipy/Params.py
def Inverse(self,
            thickness: float,
            flow_resistivity: float,
            porosity: float,
            air_gap: float=0,
            uncertainty: float=0.01,
            early_stopping: float=1e-15,
            verbose: bool=False) -> dict:
    """
    Optimization routine for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths).
    The routine uses the Sequential Least Squares Programming method (https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html)
    to minimize the error between predicted and actual absorption coefficients.

    If the early stopping criterion is not met after an initial guess, a unique grid search of the parameter space is crafted to help ensure
    the global minimum is found (ie the correct values for the parameters are identified).

    Parameters
    ----------
    thickness (float):
        The measured thickness of the sample [mm]

    flow_resistivity (float):
        The measured flow resistivity of the sample [Pa*s/m2]

    porosity (float):
        The measured porosity of the sample [-]

    air_gap (float):
        The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

    uncertainty (float):
        A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements
        of the sample [0 - 1].  Increasing the uncertainty value will result in a wider search of the parameter space.

    early_stopping (float):
        criterion for ending the search early.  If the calculated error at any given step is less than this value, the routine will terminate
        and return the results. The default value of 1e-15 has been tested on a number of simulated cases.

    verbose (bool):
         If true, the progress of the optimization routine will print to the console.

    Returns
    -------
    result_dict (dict):
        dictionary containing the identified parameters associated with the lowest calculated error.

    """
    self.thickness = thickness
    self.flow_resistivity = flow_resistivity
    self.porosity = porosity
    self.air_gap = air_gap

    if uncertainty >= 0 and uncertainty <= 1:
        self.uncertainty = uncertainty

    else:
        print("Uncertainty must be between 0 and 1, reverting to default uncertainty of 1.0%!")
        self.uncertainty = 0.01

    init_tort = 2.5

    bnds = self._bounds(init_tort)
    x0 = [self.thickness,self.flow_resistivity,self.porosity,init_tort,(bnds[4][1]-bnds[4][0])/2,(bnds[5][1]-bnds[5][0])/2,self.air_gap] 
    cons = ({'type':'ineq','fun':lambda x:x[5]-x[4]})
    res = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})
    err = res.fun
    results = np.around(res.x,decimals=3)

    if err < early_stopping:
        result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}  
        if verbose == True:
            print(f"Early stopping criteria has been met. The current lowest error is: {err}")
        return(result_dict)

    elif err > early_stopping:
        bnds_temp = self._bounds(results[3])
        tort_grid = [bnds_temp[3][0],(.75*bnds_temp[3][0]+.25*bnds_temp[3][1]),(.5*bnds_temp[3][0]+.5*bnds_temp[3][1]),(.25*bnds_temp[3][0]+.75*bnds_temp[3][1]),bnds_temp[3][1]]
        vcl_grid = [bnds_temp[4][0],(.75*bnds_temp[4][0]+.25*bnds_temp[4][1]),(.5*bnds_temp[4][0]+.5*bnds_temp[4][1]),(.25*bnds_temp[4][0]+.75*bnds_temp[4][1]),bnds_temp[4][1]]
        tcl_grid = [bnds_temp[5][0],(.75*bnds_temp[5][0]+.25*bnds_temp[5][1]),(.5*bnds_temp[5][0]+.5*bnds_temp[5][1]),(.25*bnds_temp[5][0]+.75*bnds_temp[5][1]),bnds_temp[5][1]]

        loop_len = len(tort_grid)*len(vcl_grid)*len(tcl_grid)
        i = 1

        for to in tort_grid: 
            for v in vcl_grid:
                for tc in tcl_grid:
                    phi = self.porosity
                    fr = self.flow_resistivity
                    t = self.thickness
                    air = self.air_gap
                    x0 = [t,fr,phi,to,v,tc,air]

                    grid_search = round((i/loop_len)*100,2)
                    bnds = self._bounds(results[3])
                    res2 = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})

                    if verbose == True:
                        print(f"{grid_search}% of the parameter space has been searched. The current lowest error is: {err}")


                    if res2.fun < err:
                        err = res2.fun
                        results = np.around(res2.x,decimals=3)

                        if err < early_stopping:
                            result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}
                            if verbose == True:
                                print(f"Early stopping criteria has been met. The current lowest error is: {err}")
                            return(result_dict)
                    i+=1


        print("Warning: stopping criterion not met during parameter search. Double check known inputs and/or consider increasing the uncertainty value of the knowns.")
        result_dict = {'thickness': results[0],
                       'flow resistivity': results[1],
                       'porosity': results[2],
                       'tortuosity': results[3],
                       'viscous characteristic length': results[4],
                       'thermal characteristic length': results[5],
                       'air gap': results[6],
                       'error': err}

        return(result_dict)

Indirect(thickness, porosity, flow_resistivity=None, air_gap=0)

Indirect method for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths), based on:

Panneton, R. & Salissou, Yacoubou. (2009). Indirect acoustical characterization of sound absorbing materials.. The Journal of the Acoustical Society of America. 126. 2297. 10.1121/1.3249416.

This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples and it is susceptible to uncertainty in the measurements of thickness, porosity, flow resistivity, air gap, and the acoustic indicator(s) -- but the advantage is that it does not require a flow resistivity measurement in order to estimate the JCA parameters.

Parameters

thickness (float): The measured thickness of the sample [mm]

porosity (float): The measured porosity of the sample [-]

flow_resistivity (float): Optional, the measured flow resistivity of the sample [Pa*s/m2]. If no flow resistivity is specified, the value will be estimated automatically.

air_gap (float): The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

Returns

result_dict (dict): dictionary containing the identified parameters associated with the lowest calculated error.

Source code in src/acoustipy/Params.py
def Indirect(self,
             thickness: float,
             porosity: float,
             flow_resistivity: float=None,
             air_gap: float=0) -> dict:
    """
    Indirect method for identifying the hard-to-measure JCA parameters (tortuosity, viscous, and thermal characteristic lengths), based on:

    Panneton, R. & Salissou, Yacoubou. (2009). Indirect acoustical characterization of sound absorbing materials.. 
    The Journal of the Acoustical Society of America. 126. 2297. 10.1121/1.3249416.

    This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples and 
    it is susceptible to uncertainty in the measurements of thickness, porosity, flow resistivity, air gap, 
    and the acoustic indicator(s) -- but the advantage is that it does not require a flow resistivity measurement in order to 
    estimate the JCA parameters.

    Parameters
    ----------
    thickness (float):
        The measured thickness of the sample [mm]

    porosity (float):
        The measured porosity of the sample [-]

    flow_resistivity (float):
        Optional, the measured flow resistivity of the sample [Pa*s/m2].  If no flow resistivity is specified, the value
        will be estimated automatically.

    air_gap (float):
        The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

    Returns
    -------
    result_dict (dict):
        dictionary containing the identified parameters associated with the lowest calculated error.

    """

    self.thickness = thickness
    self.porosity = porosity
    self.air_gap = air_gap

    if flow_resistivity == None:
        self.flow_resistivity = None
        return_preds = True
    else:
        self.flow_resistivity = flow_resistivity
        return_preds = False

    air_gap = self.air_gap/1000
    thickness = self.thickness/1000
    w = 2*np.pi*self.frequency
    k0 = w / self.soundspeed_temp

    if self.input_type == 'absorption':
        raise ValueError('Absorption data cannot be used for Indirect characterizations, please specify reflection or surface impedance data')

    elif self.opt_type == 'Gap' or self.opt_type == 'No Gap':
        raise ValueError('Dual mount types are required for Indirect characterizations')

    elif self.input_type == 'surface':
        Zs_NG = self.no_gap_data[:,1]
        Zs_G = self.gap_data[:,1]

    elif self.input_type == 'reflection':
        Zs_NG = self.Z0*((1+self.no_gap_data[:,1])/(1-self.no_gap_data[:,1]))
        Zs_G = self.Z0*((1+self.gap_data[:,1])/(1-self.gap_data[:,1]))


    T11A = np.cos(k0*air_gap)
    T21A = (1j/self.Z0)*np.sin(k0*air_gap)
    Zs_A = T11A/T21A

    Zp = np.sqrt((Zs_NG*(Zs_G-Zs_A))+(Zs_G*Zs_A))
    kp = np.arctan(Zp/(1j*Zs_NG))/thickness

    test = np.column_stack((self.frequency,np.real(Zp/(1j*Zs_NG))))

    try:
        cutoff = test[np.where(test[:-1] * test[1:] < 0 )[0]]
        cutoff = np.abs(np.min(cutoff[:,0]))
    except ValueError:
        cutoff = np.max(self.frequency)

    peff = Zp*kp/w
    keff = w*np.divide(Zp,kp)

    re_peff = np.real(peff)
    im_peff = np.imag(peff)

    fr = np.column_stack((self.frequency**2,-im_peff*w))
    fr_curve = fr[np.where(fr[:,0] <= cutoff**2)]
    slope1,intercept1,r_value1,p_value1,std_err1 = scipy.stats.linregress(fr_curve[:,0],fr_curve[:,1])

    jca_fr = np.abs(intercept1)

    #######################################################################################################

    if return_preds == False:
        tort = (self.porosity/self.density_temp)*(re_peff-np.sqrt((im_peff**2)-((self.flow_resistivity/w)**2)))
    elif return_preds == True:
        tort = (self.porosity/self.density_temp)*(re_peff-np.sqrt((im_peff**2)-((jca_fr/w)**2)))
    tort1 = np.column_stack((self.frequency,tort))
    tort_curve = tort1[np.where(tort1[:,0] <= cutoff )]
    jca_tort = np.abs(np.mean(tort_curve[:,1]))

    #######################################################################################################

    phi_num = (self.density_temp*jca_tort)
    if return_preds == False:
        phi_denom = re_peff-np.sqrt((im_peff**2)-((self.flow_resistivity/w)**2))
    elif return_preds == True:
        phi_denom = re_peff-np.sqrt((im_peff**2)-((jca_fr/w)**2))
    phi = phi_num/phi_denom
    phi1 = np.column_stack((self.frequency,phi))
    phi_curve = phi1[np.where((phi1[:,0] <= cutoff) & (phi1[:,0] >= 500))]
    jca_phi = np.abs(np.mean(phi_curve[:,1]))

    ####################################################################################################### 

    if return_preds == False:
        vcl = jca_tort*np.sqrt((2*self.density_temp*self.viscosity_temp)/((w*self.porosity*im_peff)*((self.density_temp*jca_tort)-(self.porosity*re_peff))))/(1e-6)
    elif return_preds == True:
        vcl = jca_tort*np.sqrt((2*self.density_temp*self.viscosity_temp)/((w*jca_phi*im_peff)*((self.density_temp*jca_tort)-(jca_phi*re_peff))))/(1e-6)
    vcl1 = np.column_stack((self.frequency,vcl))
    vcl_curve = vcl1[np.where(vcl1[:,0] <= cutoff )]
    jca_vcl = np.abs(np.mean(vcl_curve[:,1]))

    #######################################################################################################        

    tcl0 = np.sqrt((2*self.viscosity_temp)/(w*self.density_temp*self.Pr_temp))
    if return_preds == False:
        tcl1 = ((1-((keff*self.porosity)/(self.gamma_temp*self.P0)))/(1-((keff*self.porosity)/self.P0)))**2
    elif return_preds == True:
        tcl1 = ((1-((keff*jca_phi)/(self.gamma_temp*self.P0)))/(1-((keff*jca_phi)/self.P0)))**2
    tcl2 = 1/(-np.imag(tcl1))
    tcl3 = np.sqrt(2*tcl2)       
    tcl4 = tcl0*tcl3/(1e-6)
    tcl5 = np.column_stack((self.frequency,tcl4))
    tcl_curve = tcl5[np.where((tcl5[:,0] <= cutoff) & (tcl5[:,0] >= 500))]
    jca_tcl = np.abs(np.mean(tcl_curve[:,1]))

    #######################################################################################################           

    if return_preds == False:
        kn0 = (self.porosity*self.viscosity_temp)/(w*self.density_temp*self.Pr_temp)
    elif return_preds == True:
        kn0 = (jca_phi*self.viscosity_temp)/(w*self.density_temp*self.Pr_temp)
    kn1 = 1/np.sqrt(-np.real(tcl1))
    kn3 = kn0*kn1/(1e-10)
    kn4 = np.column_stack((self.frequency,kn3))
    k0_curve = kn4[np.where((kn4[:,0] <= cutoff) & (kn4[:,0] >= 500))]
    jca_k0 = np.abs(np.mean(k0_curve[:,1]))

    result_dict = {'thickness': self.thickness,
                   'flow resistivity': self.flow_resistivity,
                   'porosity': self.porosity,
                   'tortuosity': round(jca_tort,4),
                    'viscous characteristic length': round(jca_vcl,4),
                    'thermal characteristic length': round(jca_tcl,4),
                    'air gap': self.air_gap} 

    full_predicted_dict = {'thickness': self.thickness,
                           'flow resistivity': jca_fr,
                           'porosity': jca_phi,
                           'tortuosity': jca_tort,
                           'viscous characteristic length': jca_vcl,
                           'thermal characteristic length': jca_tcl,
                           'air gap': self.air_gap} 

    if return_preds == False:
        return(result_dict)

    elif return_preds == True:
        return(full_predicted_dict)

Hybrid(thickness, porosity, flow_resistivity=None, air_gap=0, uncertainty=0.01, early_stopping=1e-15, verbose=False)

The Hybrid routine uses both the inverse and indirect characterization methods to identify the JCA parameters. The parameters are first estimated using the indirect method and the error between measured and estimated absorption coefficients is determined.

If the early stopping criterion is not met using the indirect method, the estimate is then used as the initial guess for the inverse procedure and to calculate the bounds of the grid search.

This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples. The advantage of using this procedure compared to the inverse or indirect methods alone are: Inverse: The Hybrid method does not require flow resitivity to be known. Indirect: The Hybrid method is much less susceptible to uncertainty in the measurements.

Parameters

thickness (float): The measured thickness of the sample [mm]

flow_resistivity (float): The measured flow resistivity of the sample [Pa*s/m2]

porosity (float): The measured porosity of the sample [-]

air_gap (float): The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

uncertainty (float): A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements of the sample [0 - 1]. Increasing the uncertainty value will result in a wider search of the parameter space.

early_stopping (float): criterion for ending the search early. If the calculated error at any given step is less than this value, the routine will terminate and return the results. The default value of 1e-15 has been tested on a number of simulated cases.

verbose (bool): If true, the progress of the optimization routine will print to the console.

Returns

result_dict (dict): dictionary containing the identified parameters associated with the lowest calculated error.

Source code in src/acoustipy/Params.py
def Hybrid(self,
           thickness: float,
           porosity: float,
           flow_resistivity: float=None,
           air_gap: float=0,
           uncertainty: float=0.01,
           early_stopping: float=1e-15,
           verbose: bool=False) -> dict:
    """
    The Hybrid routine uses both the inverse and indirect characterization methods to identify the JCA parameters.  The parameters are 
    first estimated using the indirect method and the error between measured and estimated absorption coefficients is determined.

    If the early stopping criterion is not met using the indirect method, the estimate is then used as the initial guess for the inverse
    procedure and to calculate the bounds of the grid search.

    This method requires 'Dual' mounting conditions and either reflection or surface impedance measurements of the samples.
    The advantage of using this procedure compared to the inverse or indirect methods alone are:
        Inverse: The Hybrid method does not require flow resitivity to be known.
        Indirect:  The Hybrid method is much less susceptible to uncertainty in the measurements.

    Parameters
    ----------
    thickness (float):
        The measured thickness of the sample [mm]

    flow_resistivity (float):
        The measured flow resistivity of the sample [Pa*s/m2]

    porosity (float):
        The measured porosity of the sample [-]

    air_gap (float):
        The measured impedance tube air gap behind the sample, if 'Gap' or 'Dual' mounting conditions are specified [mm]

    uncertainty (float):
        A measure of how uncertain the user is in the thickness, flow resistivity, porosity, and air gap measurements
        of the sample [0 - 1].  Increasing the uncertainty value will result in a wider search of the parameter space.

    early_stopping (float):
        criterion for ending the search early.  If the calculated error at any given step is less than this value, the routine will terminate
        and return the results. The default value of 1e-15 has been tested on a number of simulated cases.

    verbose (bool):
         If true, the progress of the optimization routine will print to the console.

    Returns
    -------
    result_dict (dict):
        dictionary containing the identified parameters associated with the lowest calculated error.

    """
    self.thickness = thickness
    self.porosity = porosity
    self.air_gap = air_gap
    if uncertainty >= 0 and uncertainty <= 1:
        self.uncertainty = uncertainty

    else:
        print("Uncertainty must be between 0 and 1, reverting to default uncertainty of 1.0%!")
        self.uncertainty = 0.01


    indirect_results = self.Indirect(self.thickness,self.porosity,flow_resistivity,self.air_gap)

    if np.isnan(indirect_results['thermal characteristic length']):
        indirect_results['thermal characteristic length'] = indirect_results['viscous characteristic length']

    self.flow_resistivity = indirect_results['flow resistivity']

    init_tort = indirect_results['tortuosity']

    bnds = self._bounds(init_tort)
    x0 = [self.thickness,indirect_results['flow resistivity'],indirect_results['porosity'],init_tort,indirect_results['viscous characteristic length'],indirect_results['thermal characteristic length'],self.air_gap] 
    cons = ({'type':'ineq','fun':lambda x:x[5]-x[4]})
    res = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})
    err = res.fun
    results = np.around(res.x,decimals=3)

    if err < early_stopping:
        result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}  
        if verbose == True:
            print(f"Early stopping criteria has been met. The current lowest error is: {err}")
        return(result_dict)

    elif err > early_stopping:
        bnds_temp = self._bounds(results[3])
        tort_grid = [bnds_temp[3][0],(.75*bnds_temp[3][0]+.25*bnds_temp[3][1]),(.5*bnds_temp[3][0]+.5*bnds_temp[3][1]),(.25*bnds_temp[3][0]+.75*bnds_temp[3][1]),bnds_temp[3][1]]
        vcl_grid = [bnds_temp[4][0],(.75*bnds_temp[4][0]+.25*bnds_temp[4][1]),(.5*bnds_temp[4][0]+.5*bnds_temp[4][1]),(.25*bnds_temp[4][0]+.75*bnds_temp[4][1]),bnds_temp[4][1]]
        tcl_grid = [bnds_temp[5][0],(.75*bnds_temp[5][0]+.25*bnds_temp[5][1]),(.5*bnds_temp[5][0]+.5*bnds_temp[5][1]),(.25*bnds_temp[5][0]+.75*bnds_temp[5][1]),bnds_temp[5][1]]

        loop_len = len(tort_grid)*len(vcl_grid)*len(tcl_grid)
        i = 1

        for to in tort_grid: 
            for v in vcl_grid:
                for tc in tcl_grid:
                    phi = self.porosity
                    fr = self.flow_resistivity
                    t = self.thickness
                    air = self.air_gap
                    x0 = [t,fr,phi,to,v,tc,air]

                    grid_search = round((i/loop_len)*100,2)
                    bnds = self._bounds(results[3])
                    res2 = minimize(self._error,x0,method='SLSQP',bounds=bnds,constraints=cons,tol = 1e-50,options={'ftol':1e-50, 'maxiter':1000})

                    if verbose == True:
                        print(f"{grid_search}% of the parameter space has been searched. The current lowest error is: {err}")


                    if res2.fun < err:
                        err = res2.fun
                        results = np.around(res2.x,decimals=3)

                        if err < early_stopping:
                            result_dict = {'thickness':results[0],'flow resistivity':results[1],'porosity':results[2],'tortuosity':results[3],'viscous characteristic length':results[4],'thermal characteristic length':results[5],'air gap':results[6],'error':err}
                            if verbose == True:
                                print(f"Early stopping criteria has been met. The current lowest error is: {err}")
                            return(result_dict)
                    i+=1


        print("Warning: stopping criterion not met during parameter search. Double check known inputs and/or consider increasing the uncertainty value of the knowns.")
        result_dict = {'thickness': results[0],
                       'flow resistivity': results[1],
                       'porosity': results[2],
                       'tortuosity': results[3],
                       'viscous characteristic length': results[4],
                       'thermal characteristic length': results[5],
                       'air gap': results[6],
                       'error': err}

        return(result_dict)

stats(parameters)

Calculates statistics about the parameters identified in the optimization routine via linear regression of the predicted vs measured absorption coefficients.

Parameters

parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.

Returns

stats (dict): dictionary containing the slope, intercept, r value, p value, and std error returned from the linear regression. If 'Dual' opt_type is specified, the statistics for each mounting condition are averaged.

Source code in src/acoustipy/Params.py
def stats(self,
          parameters:dict) -> dict:
    """
    Calculates statistics about the parameters identified in the optimization routine via linear regression of the predicted vs measured
    absorption coefficients.

    Parameters
    ----------
    parameters (dict):
        dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
        viscous characteristic length, thermal characteristic length, and air gap of the sample.

    Returns
    -------
    stats (dict):
        dictionary containing the slope, intercept, r value, p value, and std error returned from the linear regression.
        If 'Dual' opt_type is specified, the statistics for each mounting condition are averaged.

    """
    if self.opt_type == 'No Gap':
        x = self.meas_abs[0]
        y = self._predictionJCA(parameters)

        slope,intercept,r_value,p_value,std_err = scipy.stats.linregress(x,y)
        stats = {'slope':slope,'intercept':intercept,'r_value':r_value,'p_value':p_value,'std_err':std_err}

        return(stats)

    elif self.opt_type == 'Gap':
        x = self.meas_abs[1]
        y = self._predictionJCA(parameters)

        slope,intercept,r_value,p_value,std_err = scipy.stats.linregress(x,y)
        stats = {'slope':slope,'intercept':intercept,'r_value':r_value,'p_value':p_value,'std_err':std_err}

        return(stats)

    elif self.opt_type == 'Dual':
        x1 = self.meas_abs[0]
        y1 = self._predictionJCA(parameters)[0]

        slope1,intercept1,r_value1,p_value1,std_err1 = scipy.stats.linregress(x1,y1)

        x2 = self.meas_abs[1]
        y2 = self._predictionJCA(parameters)[1]

        slope2,intercept2,r_value2,p_value2,std_err2 = scipy.stats.linregress(x2,y2)

        slope = np.abs((slope1+slope2)/2)
        intercept = np.abs((intercept1+intercept2)/2)
        r_value = np.abs((r_value1+r_value2)/2)
        p_value = np.abs((p_value1+p_value2)/2)
        std_err = np.abs((std_err1+std_err2)/2)

        stats = {'slope':slope,'intercept':intercept,'r_value':r_value,'p_value':p_value,'std_err':std_err}

        return(stats)

plot_comparison(parameters)

Plots the predicted and measured frequency dependent absorption coefficients.

Parameters

parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.

Source code in src/acoustipy/Params.py
def plot_comparison(self,
                    parameters:dict) -> None:
    """
    Plots the predicted and measured frequency dependent absorption coefficients.

    Parameters
    ----------
    parameters (dict):
        dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
        viscous characteristic length, thermal characteristic length, and air gap of the sample.

    """

    f, ax = plt.subplots(1)

    if self.opt_type == 'No Gap':
        actual = self.meas_abs[0]
        predicted = self._predictionJCA(parameters)

        ax.plot(self.frequency,actual,label='Actual')
        ax.plot(self.frequency,predicted,label='Predicted')

        ax.legend(loc="lower right")
        ax.set_ylim(bottom=0)

        plt.show()


    elif self.opt_type == 'Gap':
        actual = self.meas_abs[1]
        predicted = self._predictionJCA(parameters)

        ax.plot(self.frequency,actual,label='Actual')
        ax.plot(self.frequency,predicted,label='Predicted')

        ax.legend(loc="lower right")
        ax.set_ylim(bottom=0)

        plt.show()

    elif self.opt_type == 'Dual':
        no_gap_pred = self._predictionJCA(parameters)[0]
        gap_pred = self._predictionJCA(parameters)[1]
        no_gap_actual = self.meas_abs[0]
        gap_actual = self.meas_abs[1]

        ax.plot(self.frequency,no_gap_actual,label='No Gap Actual')
        ax.plot(self.frequency,no_gap_pred,label='No Gap Predicted')
        ax.plot(self.frequency,gap_actual,label='Gap Actual')
        ax.plot(self.frequency,gap_pred,label='Gap Predicted')

        ax.legend(loc="lower right")
        ax.set_ylim(bottom=0)

        plt.show()

to_csv(FileName, parameters)

Saves the identified parameters and the measured/predicted absorption curves to a csv file.

Parameters

FileName (str): Name of the csv file to save data to.

parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.

Source code in src/acoustipy/Params.py
def to_csv(self,
           FileName: str,
           parameters: dict) -> None:
    """
    Saves the identified parameters and the measured/predicted absorption curves to a csv file.

    Parameters
    ----------
    FileName (str):
        Name of the csv file to save data to.

    parameters (dict):
        dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
        viscous characteristic length, thermal characteristic length, and air gap of the sample.

    """

    if ".csv" in FileName:
        file = FileName
    else:
        file = FileName+".csv"


    if self.opt_type == 'No Gap':
        actual = self.meas_abs[0]
        predicted = self._predictionJCA(parameters)
        all_data = {'frequency':self.frequency,'measured':actual,'predicted':predicted}


    elif self.opt_type == 'Gap':
        actual = self.meas_abs[1]
        predicted = self._predictionJCA(parameters)
        all_data = {'frequency':self.frequency,'measured':actual,'predicted':predicted}

    elif self.opt_type == 'Dual':
        no_gap_pred = self._predictionJCA(parameters)[0]
        gap_pred = self._predictionJCA(parameters)[1]
        no_gap_actual = self.meas_abs[0]
        gap_actual = self.meas_abs[1]

        all_data = {'frequency':self.frequency,'no gap measured':no_gap_actual,'no gap predicted':no_gap_pred,'gap measured':gap_actual,'gap predicted':gap_pred}

    with open(file, 'w') as f:
        [f.write('{0},{1}\n'.format(key, value)) for key, value in parameters.items()]
        writer = csv.writer(f, delimiter = ",",lineterminator='\n')
        writer.writerow(all_data.keys())
        writer.writerows(zip(*all_data.values()))

load_to_array(FileName, type='complex')

Loads data from csv or excel file.

Parameters

FileName (str): Name of the file to load data from

type (str): type of data being loaded -- either complex or floating point data

Source code in src/acoustipy/Params.py
def load_to_array(self,
                  FileName: str,
                  type: str ='complex') -> None:
    """
    Loads data from csv or excel file.

    Parameters
    ----------
    FileName (str):
        Name of the file to load data from

    type (str):
        type of data being loaded -- either complex or floating point data

    """
    if type == 'complex':
        try:
            data = np.asarray(pd.read_csv(FileName,header=None).map(lambda s: np.complex128(s.replace('i', 'j'))))
        except Exception:
            data = np.asarray(pd.read_excel(FileName,header=None).map(lambda s: np.complex128(s.replace('i', 'j'))))

    elif type == 'float':
        try:
            data = np.asarray(pd.read_csv(FileName,header=None))
        except Exception:
            data = np.asarray(pd.read_excel(FileName,header=None))  

    return (data)

to_database(parameters, layer_name)

Saves the identified parameters as a new layer in a database.

Parameters

parameters (dict): dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, viscous characteristic length, thermal characteristic length, and air gap of the sample.

layer_name (str): Specifies the name of the layer. Must be a unique identifier.

Source code in src/acoustipy/Params.py
def to_database(self,
                parameters: dict,
                layer_name: str) -> None:
    """
    Saves the identified parameters as a new layer in a database.

    Parameters
    ----------
    parameters (dict):
        dictionary containing the identified thickness, flow resistivity, porosity, tortuosity, 
        viscous characteristic length, thermal characteristic length, and air gap of the sample.

    layer_name (str):
        Specifies the name of the layer.  Must be a unique identifier.
    """

    thickness = parameters['thickness']
    flow_resistivity = parameters['flow resistivity']
    porosity = parameters['porosity']
    tortuosity = parameters['tortuosity']
    viscous_characteristic_length = parameters['viscous characteristic length']
    thermal_characteristic_length = parameters['thermal characteristic length']

    s = AcoustiBase()
    data = s.pull('LAYER')
    id1 = len(data)+1
    params = [id1,layer_name,'identified','null',thickness,flow_resistivity,porosity,tortuosity,viscous_characteristic_length,thermal_characteristic_length,'null','null','null','null','null','null']
    s.execute(params,'LAYER')
    s.commit()
    s.close()