Biot-Limp Model
The Biot-Limp model modifies the dynamic mass density \((\tilde{\rho}_{eq})\) determined via an equivalent fluid model such as: DB, DBM, JCA, JCAL, and JCAPL.
The acoustipy implementation follows from eq. 24 in Bécot and Jaouen.
\[
\frac{1}{\tilde{\rho}_{limp}} = \frac{1}{\phi\tilde{\rho}_{eq}}+\frac{\gamma^2}{\phi\tilde{\rho}}
\]
where \(\gamma\) and \(\tilde{\rho}\) are defined as:
\[
\gamma = \frac{\rho_{0}}{\tilde{\rho}_{eq}}-1
\]
\[
\tilde{\rho} = \rho_{1}+\phi\rho_{0}-\frac{\rho_{0}^2}{\tilde{\rho}_{eq}}
\]
The Add_Biot_Limp_Layer method then converts The modified dynamic mass density and bulk modulus to the characteristic impedence \((Z_{c})\) and wavenumber \((k_{c})\) for use in the layer transfer matrix.
\[
Z_{c} = \sqrt{\tilde{\rho}_{limp}\widetilde{K}}
\]
\[
k_{c} = {\omega}\sqrt{\frac{\tilde{\rho}_{limp}}{\widetilde{K}}}
\]
Model Parameters:
Using the following nomenclature --- Symbol = [Units] (name)
\[
\rho_{1} = \Bigg[\frac{kg}{m^3}\Bigg]\tag{volumetric density}
\]
The following parameters are used to find the dynamic mass density \((\tilde{\rho}_{eq})\) from the specified equivalent fluid model.
\[
\sigma = \Bigg[\frac{Pa*s}{m^2}\Bigg]\tag{static airflow resistivity}
\]
\[
\phi = \Bigg[unitless\Bigg]\tag{porosity}
\]
\[
\tau = \Bigg[unitless\Bigg]\tag{tortuosity}
\]
\[
\Lambda = \Bigg[{\mu}m\Bigg]\tag{viscous characteristic length}
\]
\[
\Lambda^{\prime} = \Bigg[{\mu}m\Bigg]\tag{thermal characteristic length}
\]
\[
k_{0}^{\prime} = \Bigg[m^2\Bigg]\tag{thermal permeability}
\]
\[
\alpha_{0}^{\prime} = \Bigg[unitless\Bigg]\tag{thermal tortuosity}
\]
\[
\alpha_{0} = \Bigg[unitless\Bigg]\tag{viscous tortuosity}
\]
Defining Other Symbols:
Using the following nomenclature --- Symbol = [Units] (name)
\[
\rho_{0} = \Bigg[\frac{kg}{m^3}\Bigg]\tag{air density}
\]