Delaney-Bazley Model
The Delaney-Bazley model is an empirical, one parameter model consisting of the static airflow resistivity \((\sigma)\) of the porous material.
The equations for the complex characteristic impedance \((Z_{c})\) and wavenumber \((k_{c})\) can be found below:
\[
Z_{c} = \rho_{0}c_{0}\Bigg[ 1+0.0571\left(\frac{\rho_{0}f}{\sigma}\right)^{-0.754}-j0.0870\left(\frac{\rho_{0}f}{\sigma}\right)^{-0.732}\Bigg]
\]
\[
k_{c} = \frac{\omega}{c_{0}}\Bigg[1+0.0978\left(\frac{\rho_{0}f}{\sigma}\right)^{-0.700}-j0.1890\left(\frac{\rho_{0}f}{\sigma}\right)^{-0.595}\Bigg]
\]
In the acoustipy implementation, the characteristic impedence and wavenumber are converted to the dynamic mass density \((\tilde{\rho})\) and dynamic bulk modulus \((\widetilde{K})\) via the equations below, as the Add_DB_Layer method calls the internal _calc_dynamics method for consistency with the other equivalent fluid models.
\[
\tilde{\rho} = \frac{Z_{c}k_{c}}{\omega}
\]
\[
\widetilde{K} = \frac{{\omega}Z_{c}}{k_{c}}
\]
The dynamic mass density and bulk modulus are then converted back to the characteristic impedence and wavenumber for use in the layer transfer matrix via:
\[
Z_{c} = \sqrt{\tilde{\rho}\widetilde{K}}
\]
\[
k_{c} = {\omega}\sqrt{\frac{\tilde{\rho}}{\widetilde{K}}}
\]
The model is valid in the frequency range defined below:
\[
0.01 < {\frac{f}{\sigma}} < 1.00
\]
Model Parameters:
Using the following nomenclature --- Symbol = [Units] (name)
\[
\sigma = \Bigg[\frac{Pa*s}{m^2}\Bigg]\tag{static airflow resistivity}
\]
Defining Other Symbols:
Using the following nomenclature --- Symbol = [Units] (name) or Symbol = equation = [Units] (name)
\[
\rho_{0} = \Bigg[\frac{kg}{m^3}\Bigg]\tag{air density}
\]
\[
f = \Bigg[Hz\Bigg]\tag{linear frequency}
\]
\[
\omega = 2{\pi}f = \Bigg[\frac{radians}{s}\Bigg]\tag{angular frequency}
\]