Equivalent Fluid MPP Model
The equivalent fluid microperforate model estimates the input parameters to the JCA model based on the perforate diameter \((d)\), center-to-center distance \((b)\), and thickness \((t)\).
The internal _calc_dynamics method is then used to determine the dynamic mass density \((\tilde{\rho})\) and dynamic bulk modulus \((\widetilde{K})\) using the JCA model.
Estimation of JCA parameters
\[
\phi = \frac{\pi}{4}\Bigg(\frac{d}{b}\Bigg)^2
\]
\[
\sigma = \frac{32\eta}{\phi d^2}
\]
\[
\Lambda = \frac{d}{2}
\]
\[
\Lambda^{\prime} = \frac{d}{2}
\]
\[
\tau = 1+\frac{2*fok}{t}
\]
where \(fok\) is:
\[
fok = \frac{4d}{3\pi}(1-1.13eps-0.09eps^2+0.27eps^3)
\]
and \(eps\) is:
\[
eps = 2\sqrt{\frac{\phi}{\pi}}
\]
The Add_MPP_EF_Layer method then converts the modified dynamic mass density and bulk modulus to the characteristic impedence \((Z_{c})\) and wavenumber \((k_{c})\) for use in the layer transfer matrix.
\[
Z_{c} = \sqrt{\tilde{\rho}\widetilde{K}}
\]
\[
k_{c} = {\omega}\sqrt{\frac{\tilde{\rho}}{\widetilde{K}}}
\]
Model Parameters:
Using the following nomenclature --- Symbol = [Units] (name)
Model Specific
\[
d = \Bigg[m\Bigg]\tag{perforate diameter}
\]
\[
b = \Bigg[m\Bigg]\tag{center-to-center distance}
\]
\[
t = \Bigg[m\Bigg]\tag{layer thickness}
\]
JCA Parameters
\[
\sigma = \Bigg[\frac{Pa*s}{m^2}\Bigg]\tag{static airflow resistivity}
\]
\[
\phi = \Bigg[unitless\Bigg]\tag{porosity}
\]
\[
\tau = \Bigg[unitless\Bigg]\tag{tortuosity}
\]
\[
\Lambda = \Bigg[{\mu}m\Bigg]\tag{viscous characteristic length}
\]
\[
\Lambda^{\prime} = \Bigg[{\mu}m\Bigg]\tag{thermal characteristic length}
\]
Defining Other Symbols:
Using the following nomenclature --- Symbol = [Units] (name)
\[
\eta = \Bigg[Pa*s\Bigg]\tag{viscosity of air}
\]