MAA MPP Model
The Maa microperforate model determines the characteristic impedence \((Z_{c})\) of the layer based on the perforate diameter \((d)\), center-to-center distance \((b)\), and thickness \((t)\).
Unlike other material models, the Maa MPP model does not calculate a characteristic wavenumber \((k_{c})\). Instead, a separate transfer matrix is used.
Determination of Characteristic Impedence
\[
Z_{c} = r+j\omega m
\]
where \(r\) is:
\[
r = \frac{32\eta t}{\phi d^2} r_{1}
\]
\[
r_{1} = \sqrt{1+\frac{x^2}{32}}+\frac{\sqrt{2}}{32} x \frac{d}{t}
\]
\(m\) is:
\[
m = \frac{\rho_{0}t}{\phi} m_{1}
\]
\[
m_{1} = 1+\frac{1}{\sqrt{1+\frac{x^2}{2}}}+\frac{0.85d}{t}
\]
and
\[
x = \frac{d}{2}\sqrt{\frac{\omega\rho_{0}}{\eta}}
\]
\[
\phi = \frac{\pi}{4}\Bigg(\frac{d}{b}\Bigg)^2
\]
The characteristic impedence \((Z_{c})\) is then used directly in the layer transfer matrix via the Add_MAA_MPP_Layer method.
Model Parameters:
Using the following nomenclature --- Symbol = [Units] (name)
\[
d = \Bigg[m\Bigg]\tag{perforate diameter}
\]
\[
b = \Bigg[m\Bigg]\tag{center-to-center distance}
\]
\[
t = \Bigg[m\Bigg]\tag{layer thickness}
\]
Defining Other Symbols:
Using the following nomenclature --- Symbol = [Units] (name)
\[
\rho_{0} = \Bigg[\frac{kg}{m^3}\Bigg]\tag{air density}
\]
\[
\eta = \Bigg[Pa*s\Bigg]\tag{viscosity of air}
\]
\[
\omega = \Bigg[\frac{radians}{s}\Bigg]\tag{angular frequency}
\]